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This work aims at increasing the performance prediction for acoustic propagation systems
that will operate in the presence of the inevitable parameters uncertainty. In the present
contribution, the finite element method is applied to solve an acoustic problem described by
the Helmholz equation when the geometric and material properties present uncertainty. The
influence of the uncertainty of physical parameters on the pressure field is discussed. The
results using the polynomial chaos expansion method are compared with Monte Carlo simu-
lations. It is show that uncertainty levels in the input data could result in large variability
in the calculated pressure field in the domain.
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1. Introduction

The guided acoustic propagation is an important field of acoustics. This importance arises
as a consequence of the need in reducing or increasing the sound intensity in some regions of
wave-guides. The acoustic propagation in cylindrical wave-guides is a common field in struc-
tures like automotive and aircraft engines. The Helmholtz equation is normally used to model
the propagation of acoustic waves (Cheung and Jin, 1991; Nark et al., 2003, 2005; Taktak et
al., 2012). For a large set of problems, there is no analytical closed solution to this equation.
Generally, a numerical procedure was applied to calculate the sound pressure field (Lins and Ro-
chinha, 2009; Lan, 2005). The finite element (FE) simulation is a very powerful technique which
can be applied to obtain an approximate solution to the Helmholtz equation. The deterministic
simulation leads to an approximate and nominal solution of reality. In some cases, the behavior
prediction of a system is especially difficult because of the variability induced by uncertainty.
The challenge is to improve the performance of numerical simulations of guided acoustic pro-
pagation. Recently, the probabilistic modeling of mechanical problems has received attention of
some researchers (Sepahvand and Marburg, 2014; Xia et al., 2015). All of them are looking for
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more robust models that take into account the random nature of some parameters: material pro-
perties, geometrical irregularities, boundary and initial conditions, operating conditions, loading.
The numerical accuracy and error control have been employed in simulations for fluid structure
interaction (Mansouri et al., 2013) vibroacoustic problems (Dammak et al., 20117b; Mansouri et
al., 2012a,b; Sepahvand and Marburg, 2014), CFD research (Xiu and Karniadakis, 2003) and dy-
namic responses of engineering structures (Yang and Kessissoglou, 2013). The application of the
FE method to the Helmholtz equation has also been an object of certain studies concerning the
error estimation and propagation (Ihlenburg and babuska, 1995). In (Lins and Rochinha, 2009),
the solution of acoustic problems was resolved numerically when the boundary conditions presen-
ted uncertainty. Nevertheless, according to (Lepage, 2006), there is a relative lack of information
about how statistical distributions of some variables influence the distributional properties of
the acoustic response. Based on literature reviews, one can distinguish two ways to include sto-
chastical behavior in finite element simulations: the first is a statistical approach or a sampling
method, like the Monte Carlo (MC) technique (Hurtado and Alvarez, 2012). In this method, a
large number of samples of input variables are required for reasonable accuracy. The problem
is then solved for each realization. This technique allows one to obtain the entire probability
density function of any system variable. It is widely used since it is easier to implement and very
robust. However, a huge number of realizations to be solved could lead to a prohibitive computa-
tional cost. The second probabilistic tool is a non-statistic approach or a non-sampling method,
which results in analytical treatment of the stochastic process. It consists in the polynomial cha-
os (Fisherand Bhattacharya, 2008; Creamer, 2006; Ng and Eldred, 2012). It is a more efficient
tool due to discretization of random parameters by a set of limited realizations. This theory was
initiated by Ghanem and Spanos (1991) who used expansion in Wiener-Hermite polynomials to
model stochastic processes with Gaussian random variables (Wiener, 1938). The convergence
of such an expansion in the mean square sense has been shown (Cameron and Martin, 1947)
and generalized to various continuous and discrete distributions using orthogonal polynomials
following the so called Askey-scheme (Xiu and Karniadakis, 2002). This general extension is
known as generalized polynomial chaos (gPC) (Wan and Karniadakis, 2006). Polynomial chaos
gives a mathematical framework to separate the stochastic components of a system response
from deterministic ones. According to (Xiu and Karniadakis, 2002, 2003), polynomial chaos did
not receive much attention for a long time. In the numerical aspect, one can distinguish intru-
sive and non-intrusive methods. The first method is applied to systems in which the governing
equations are known. In this case, the stochastic equations are used to generate a set of determi-
nistic equations using the Galerkin method (Ghanem and Spanos, 1991), which are difficult to
implement. Nonintrusive technique seems to be more efficient since it only requires simulations
corresponding to particular samples of the random parameters, and no modifications are needed
on the system model (Nechak et al., 2013). It worth mentioning that works on numerical simula-
tion of sound propagation in a three-dimensional duct coupled with uncertainty analysis remains
infrequent. In (Taktak et al., 2011), a numerical method of the modeling of sound propagation
in circular and rectangular cross-section ducts in the presence of flow was developed and pre-
sented. The pressure acoustic field inside the duct was determined for several incident acoustic
modes. In (Kesentini et al., 2015), the wave finite element method was applied to study guided
acoustical propagation. In those studies, uncertainties on the fluid-structure interaction were
neglected.

In this paper, we aim at increasing the performance prediction for acoustic propagation
systems that will operate in the presence of the inevitable parameters uncertainty associated
with the geometric and material properties. The stochastic methods discussed above, MC and
gPC, are implemented and integrated in finite element simulation for a circular cross-section
duct. The simulation results are discussed, compared and validated with literature.
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2. Governing equations of the physical problem

2.1. Acoustic propagation in a cylindrical duct

In this Section, the governing equations of sound propagation in circular cross-section ducts
are presented in Fig. 1. The equation governing the acoustic behavior of a fluid is the Helmholtz

Fig. 1. Description of the cylindrical guide

equation (Taktak et al., 2011; Kim and Nelson, 2004)

∆pi + k
2pi = 0 (2.1)

where ∆ is the Laplacian operator, pi is the acoustic pressure inside the studied duct and k is
the total wave number. It is well noticed that the resolution of this equation depends on the
duct geometry. In this work, a cylindrical cross-section duct is considered. For this kind of duct,
the resolution Helmholtz equation in the cylindrical coordinates system is carried out by the
variables separation method. The acoustic pressure is expressed as

P (ri, θ, z) = R(ri)Θ(θ)Z(z) (2.2)

where

Z(z) = Aejkzz +Be−jkzz Θ(θ) = θ1e
−jmθ + θ2e

jmθ R(ri) = CJm(krri) (2.3)

where A, B, θ1,2 and C are constants depending on boundaries conditions. The wave numbers
are related by the dispersion relation (Taktak, 2008)

Γ 2mn + k
2
mn − k2 = 0 (2.4)

In the case of a rigid wall, the radial wave number is defined by

Γmn =
χmn

a
(2.5)

where χmn is the n-th root of the derivative of Jm – the Bessel function of the first kind of the
order m. Thus the modal analysis can be applied (Dammak et al., 2017a; Blazejewski, 2013;
Blazejewski et al., 2014) and the acoustic pressure field inside the duct is obtained as

P (ri, θ, z, t) =
∞
∑

m=0

∞
∑

n=0

Pmn(z)Ψmn(ri, θ)e
−jωt (2.6)

where Pmn are the modal coefficients associated modes (m,n) defined by

Pmn(z) = Amne
−jkmnz +Bmne

jkmnz (2.7)

and Ψmn are the eigenfunctions of the enclosure (Blazejewski et al., 2014; Meissner, 2008), which
satisfy the Helmholtz equation and can be expressed as

Ψmn(ri, θ) = Jm
(

χmn
ri

a

)

ejmθ (2.8)

The Helmholtz equation will be solved numerically in Section 3.
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2.2. Uncertainty modeling

In this Section, we introduce two classical techniques for representing random processes: the
generalized Polynomial Chaos (gPC) and the Monte Carlo (MC) technique.

2.2.1. Polynomial chaos

The Polynomial Chaos was originally developed by Wiener (1938). It is a stochastic method
based on spectral representation of the uncertainty. The PC decomposes a random function (or
variable) into separable deterministic and stochastic components. Here, a brief mathematical
review of this approach will be given. For instance, considering any random variable λi such as
velocity, density, or pressure in a stochastic fluid dynamics problem, one can write (Nechak et
al., 2013)

λi(x, ξ) =
∞
∑

j=0

λi,j(x)φj(ξ) (2.9)

where ξ is the random variable vector with a known joint density functionW (ξ), λi,j is the deter-
ministic component and φj(ξ) is the orthogonal polynomial function satisfying the orthogonality
relation

〈φi, φj〉 =
∫

φiφjW (ξ) dξ =

{

0 if i 6= j
〈φi, φj〉 if i = j

(2.10)

where 〈·〉 is the internal product operator. As a series expansion to infinity cannot be used in
practice, the sum is truncated to a finite number of terms Np, which is shown to be dependent on
the gPC order p, and the stochastic dimension r denoting the number of uncertain parameters

λi(x, ξ) =

Np
∑

j=0

λi,j(x)φj(ξ) (2.11)

with

Np =
(p + r)!

p!r!
− 1 (2.12)

For a random variable with certain distribution, the orthogonal function φj can be chosen in
such a way that its weight function has the same form as the probability function W (ξ). Then,
computing λi is transformed into the problem of finding the coefficients λi,j of its truncated
expansion (Smith et al., 2007). To extend the application of the polynomial chaos theory to pro-
pagation of continuous non-normal input uncertainty distributions, Xiu and Karniadakis (2003)
used a set of polynomials known as the Askey scheme to obtain the Wiener-Askey generalized
Polynomial Chaos. Table 1 shows commonly used, Legendre, Hermite, and Laguerre polynomials
and the associated probability density functions (PDF) included the Askey scheme. Legendre
and Laguerre polynomials are optimal basis functions for uniform and exponential input uncer-
tainty distributions respectively, whereas the Hermite polynomials are optimal for the normal
distributions in terms of the convergence of the statistics.
The intrusive and non-intrusive approaches are generally defined to calculate these coeffi-

cients called stochastic modes. The non-intrusive approach seems to be more efficient since it
only requires simulations corresponding to particular samples of random variables and it needs
no modifications of the stochastic model, contrary to the intrusive approach. That is why only
the non-intrusive approach is considered in this paper. This approach considers the determi-
nistic model as a black-box and approximates the stochastic coefficients with formulas based
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Table 1. Correspondence between the type of distribution and the type of base of chaos

Distribution Density function Polynomial Weight function W (ξ) Support range

Uniform
1

2
Legendre Le(ξ) 1 [−1, 1]

Normal
1√
2π
exp
(−ξ2
2

)

Hermite Hn(ξ) exp
(−ξ2
2

)

[−∞,+∞]
Exponential exp(−ξ) Lagrange La(ξ) exp(−ξ) [0,+∞]

on deterministic code assessment. The spectral projection (NISP) and regression are the main
non-intrusive polynomial chaos methods used for uncertainty quantification. In the technique
NISP (Ng and Eldred, 2012), once the solution is expressed in the base of polynomial chaos
following general expression (2.11), it is projected, which determines stochastic coefficients as

λi,j(x) =
〈λi(x, ξ), φj(ξ)〉
〈φj(ξ), φj(ξ)〉

=
1

〈φ2j 〉

∫

λi(x, ξ)φj(ξ)W (ξ) dξ j = 0, . . . , Np (2.13)

The regression method (Blatman and Sudret, 2008) consists in calculating the stochastic coeffi-
cients so as to minimize the least squares sense, the gap ε between the solution of the stochastic
model and its approximation in the base of generalized polynomial chaos

ε =
Q
∑

k=1

[

λi(x, ξ
(k))−

Np
∑

j=0

λi,j(x)φj(ξ
(k))

]

(2.14)

The ξ(k) may be selected from the roots of a polynomial with the condition Q > Np + 1, with
Q being the number of Gauss points. By designating λi,j = (λi,0, . . . , λi,Np)

T, the vector of

modal coefficients, Z the matrix of elements Zq,l = φj(ξ
(q)) and λi = (λi(x, ξ

(1)), . . . , λi(x, ξ
(q)))

the vector corresponding to the game simulations ξ(q). and if the matrix ZTZ is non-singular
then the optimal solution of the classical least squares problem is given by

λi,j = (Z
TZ)−1ZTλi (2.15)

The quality of the solution depends on the conditioning of the matrix (ZTZ) called the Fischer
matrix.

2.2.2. Monte Carlo theory

The MC method provides successive resolutions of a deterministic system incorporating
uncertain parameters modeled by random variables. It generates, for all uncertain parameters
and according to their probability distributions and their correlations, random simples. For each
draw, a set of parameters is obtained and a deterministic calculation, following numerical (FES)
or analytical models well defined, is made. The main advantage of this method is that it can be
applied to any system, whatever is its size and complexity (linear, non-linear, etc.). A reasonable
accuracy of the results requires a large number of draws which makes the MC method prohibitive
in terms of computational cost. The standard MC approach considers functions of the following
form

Y =M(X) (2.16)

where M represents the model under consideration, X = [X1,X2, . . . ,Xn]
T is a vector of uncer-

tain input parameters and Y represents the vector of estimated outputs that will be a random
vector. The algorithm of this method can be summarized in 5 steps:
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Step 1: probabilistic identification of uncertain parameters in the model;

Step 2: sampling and random generation of inputs following identified probabilistic distribu-
tions;

Step 3: spread of uncertainty i.e. of the data set resulting from step 2 into the model and
determination of the corresponding outputs set;

Step 4: estimation of the outputs probabilistic distributions whose statistical characteristics
are given by the mean value µγ and standard deviation σγ . These are calculated using a
set of N simulations as follows

µγ =
1

N

N
∑

i=1

M(X(j)) σ2γ =
1

N − 1
N
∑

i=1

[M(X(j))− µ2γ ] (2.17)

Step 5: convergence analysis of the distribution of the model output.

3. Numerical results

Finite element simulations are carried out to study the acoustic propagation in a cylindrical
duct. The acoustic pressure P within a finite element can be written as

P =
m
∑

i=1

NiPi (3.1)

where Ni is a set of linear shape functions, Pi are acoustic nodal pressures at the node i, and
m is the number of nodes forming the element. For the pressure formulated acoustic elements,
the finite element equation for the fluid in matrix form is

Mf P̈+KfP = Ff , (3.2)

whereMf is the equivalent fluid mass matrix, Kf is the equivalent fluid stiffness matrix, Ff is
the vector of applied fluid loads, P is the vector of unknown nodal acoustic pressures, and P̈ is
the vector of the second derivative of acoustic pressure with respect to time.
Section 3.1 deals with numerical model validation without considering uncertainty. In Section

3.2, the stochastic methods discussed above, MC and gPC, are implemented and integrated in
finite element simulation for the cylindrical duct. In this framework, geometrical (radius of the
duct) and material properties (density) are presenting the probabilistic parameters.

3.1. Deterministic model

The chosen example consists in applying the modal pressure at the left boundary ΓL of a
cylindrical duct, as indicated in Fig. 1. The geometric characteristics of the studied duct are:
radius a = 0.02m and length L = 0.25m. The magnitude of the imposed pressure is equal
to 1Pa. At the end of the duct ΓR, a normalized acoustic impedance is applied (Zp = 2) to
reflect the acoustic wave plane. The duct has been modelled using 8000FLUID30 elements.
This is an entirely acoustic analysis and there are no active displacement degrees of freedom. In
the following, the acoustic pressure fields obtained by the present numerical simulation without
probabilistic approach is discussed. Only the real parts of the pressure are studied. The ANSYS
Finite Element model of the duct is given in Fig. 2.
Figure 3 presents the pressure field inside the duct at several frequencies. The wave propa-

gation is clear and the localization of the maximum of the real part of the acoustic pressure is
varying as a function of the frequency. Frequency evolution of the pressure magnitude in one
point inside the cylindrical duct is depicted in Fig. 4. The results greatly agree those shown in
(Kesentini et al., 2015).



Numerical modeling of uncertainty in acoustic propagation... 9

Fig. 2. ANSYS Finite Elements model of the cylindrical duct

Fig. 3. Real part of the acoustic pressure inside of the studied cylindrical wall duct

Fig. 4. Frequency evolution of the pressure magnitude in one point inside the cylindrical duct
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3.2. Probabilistic analysis

In this Section, the stochastic methods discussed above, MC and gPC, are implemented
and integrated in finite element simulation, see Section 3.1. The objective is to enhance the
performance prediction for acoustic propagation systems that will operate in the presence of the
inevitable parameters uncertainty associated simultaneously with the geometric and material
properties. The geometric uncertain parameter considered here is a, radius of the cylindrical
duct. The physical uncertain parameter is density ρ. These parameters are chosen to be uniform
random following a progressive nomination around their nominal values ±5%; a = a0+ ξa1 and
ρ = ρ0 + ξρ1, where a0, ρ0 are the mean values, and a1, ρ1 are convenient constants. Using
the Monte Carlo method to analyze the pressure field consists in creating a grid of numerical
values from the probabilistic uncertain parameters and calculating the quantity of interest of the
linearized system for each value of the grid. The case of uniform distribution of the uncertain
parameters is considered. The quantity of interest is analyzed for 500 drawings. Figure 5 shows
the distribution of the input variables (a, ρ) in the case of uniform distribution of uncertainty.

Fig. 5. Probability distribution of radius and density

Fig. 6. Magnitude of the maximum pressure inside the duct as a function of geometric and material
uncertain parameters

The results consist in the quantity of interest (the magnitude of pressure) plotted in Fig. 6
as a function of different duct radii and densities. The chaotic representation of the acoustic
pressure is

P (ri, θ, z, ξ) =

Np
∑

j=0

P j(ri, θ, z)φj(ξ) (3.3)

The Monte Carlo representation for the acoustic pressure can be expressed as

PMC(ri, θ, z, ξ) =M(X) (3.4)
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whereM is the finite element model and X = [a, ρ]T is the vector of input uncertain parameters.
The probability distribution and the relative errors are shown in Figs. 7 and 8. All results are
compared with the direct method of MC. Models based on gPC are constructed using r uncertain
parameters (r = 1→ 2). It is well depicted from Fig. 6 that for ±5% of radius variation a, the
maximum pressure magnitude is varying linearly, justifying the choice of the drawing number
in MC. In the case of variability within density, one can remark that radius has a more effect
on the pressure magnitude than density.

Fig. 7. Probability distribution of pressure

Fig. 8. Histogram of the relative error of pressure

We plot in Fig. 9 the mean value of the pressure as a function of the order p, for an uncertain
parameter with variation of ±5%. It is noted that there is a convergence of the average from
p = 4. On can notice that the pressure distribution of the mean is very similar to that obtained
when we use a deterministic model (Section 3.1). It is also proved that the results strongly
depend on the frequency used.
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Fig. 9. Average of the pressure

Table 2 shows the main features of each technique. It is worth mentioning that the Monte
Carlo technique is a very powerful method to solve complex systems with random parameters. In
this work, 500 of samplings of two input variables are calculated and then the problem is solved
for each sample of input variables. Nevertheless, according to results in Table 2, this technique
has poor convergence for mean and standard deviation of the solution, requiring a large number
of samples to achieve good precision in results, resulting in costly computation. This result is in
a good agreement with (Nechak et al., 2013).

Table 2. Comparison between MC and gPC

Frequency f = 1000Hz Monte Carlo gPC(r = 2)

Order p – 4

Number of simulations 500 25

Maximum relative error between gPC and MC – 6.4e−4

Mean of the pressure (Pa) 0.047262 0.047262

Standard deviation 0.001821 0.001826

Time [s] 43438.96 0.5182

For high frequencies that are greater than 5000Hz, Fig. 10 shows that the acoustic pressure
is varying nonlinearly according to radius of the cylindrical duct. We plot in Figs. 11a and 11b,
respectively, the mean value and the standard deviation of pressure as a function of the order p.
It is clear that there is a convergence of these statistical results from p = 7.

4. Conclusions

In this work, the MC method and the gPC have been coupled to FE simulation discussed above
in order to calculate statistical data from output pressure field. In this paper, a numerical so-
lution of the Helmholtz equation is proposed based on finite element simulation. This solution
is coupled to probabilistic approaches, when physical parameters present uncertainty. The case
of a cylindrical duct has been considered. The influence of uncertain variables on the pressure
field has been discussed. The results using the polynomial chaos expansion method have been
compared with the Monte Carlo technique. Convergence has been verified with comparisons
against exact solutions and solutions from Monte Carlo simulations. As regards efficiency, gPC
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Fig. 10. Magnitude of the maximum pressure inside the duct as a function of radius at a high frequency

Fig. 11. (a) Average and (b) standard deviation of pressure

based simulation is computationally less expensive than the MC technique to generate the so-
lution statistics. In the problems we have studied here, we can only make direct comparisons
when using two random physical parameters, and no interaction is considered. The future track
of work will consist in the study of uncertainty of the fluid-structure interaction when several
uncertain input variables are included.

References

1. Blatman G., Sudret B., 2008, Sparse polynomial chaos expansions and adaptive stochastic finite
elements using a regression approach, C.R. Mecanique, 336, 518-523

2. Blazejewski A., 2013, Modal analysis application in passive sound level control inside bounded
space in steady state, 12th Conference of Dynamical Systems Theory and Applications, Dynamical
Systems-Application, 409-420

3. Blazejewski A., Koziol P., Luczak M., 2014, Acoustical analysis of enclosure as initial ap-
proach to vehicle induced noise analysis comparatevely using STFT and wavelets, Archives of
Acoustics, 39, 385-394

4. Cameron H., Martin W., 1947, The orthogonal development of non linear functionals in series
of Fourier-Hermite functional, Annals of Mathematics, 48, 385-392



14 K. Dammak et al.

5. Cheung Y.F., Jin W.G., 1991, Solution of Helmholtz equation by Trefftz method, International
Journal for Numerical Methods in Engineering, 32, 63-78

6. Creamer D.B., 2006, On using polynomial chaos for modeling uncertainty in acoustic propagation,
Journal of the Acoustical Society of America, 119, 4, 1979-1994

7. Dammak K., Elhami A., Koubaa S., Walha L., Haddar M., 2017a, Reliability based design
optimization of coupled acoustic-structure system using generalized polynomial chaos, International
Journal of Mechanical Sciences, 134, 75-84

8. Dammak K., Koubaa S., Elhami A., Walha L., Haddar M., 2017b, Numerical modelling of
vibro-acoustic problem in presence of uncertainty: Application to a vehicle cabin, Applied Acoustics,
DOI: 10.1016/j.apacoust.2017.06.001

9. Fisher J., Bhattacharya R., 2008, Stability analysis of stochastic systems using polynomial
chaos, American Control Conference

10. Ghanem R.G., Spanos P.D., 1991, Stochastic Finite Elements: a Spectral Approach, Dover Pu-
blication INC

11. Hurtado J.E., Alvarez D.A., 2012, The encounter of interval and probabilistic approaches to
structural reliability at the design point, Computer Methods in Applied Mechanics and Engineering,
225-228, 74-94

12. Ihlenburg F., Babuska I., 1995, Finite element solution of the Helmholtz equation with high
wave number. Part I: The h-version of the FEM, Computers and Mathematics with Applications,
30, 9-37

13. Kesentini A., Taktak M., Ben Souf M.A., Bareille O., Ichchou M.N., Haddar M.,
2015, Computation of the scattering matrix of guided acoustical propagation by the Wave Finite
Element approach, Applied Acoustics

14. Kim Y., Nelson P.A., 2004, Estimation of acoustic source strengt hwith in a cylindrical duct by
inverse methods, Journal of Sound and Vibration, 275, 391-413

15. Lan J.H., 2005, Validation of 3D acoustic propagation code with analytical and experimental
results, 11th AIAA/CEAS Aeroacoustics Conference

16. Lepage K.D., 2006, Estimation of acoustic propagation uncertainty through polynomial chaos
expansions, 9th International Conference on Information Fusion

17. Lins E.F., Rochinha F.A., 2009, Analysis of uncertainty propagation in acoustics through a
sparse grid collocation scheme, 20th International Congress of Mechanical Engineering

18. Mansouri M., Radi B., El-Hami A., 2012a, Reliability-based design optimization for the ana-
lysis of vibro-acoustic problems, Proceedings of the Eleventh International Conference on Compu-
tational Structures Technology

19. Mansouri M., Radi B., El-Hami A., 2013, Coupling modal synthesis and reliability for studying
aero-acoustic problems, 21me Congrés Français de Mécanique
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